Decreased renal cytochrome P450 2C enzymes and impaired vasodilation are associated with angiotensin salt-sensitive hypertension.
نویسندگان
چکیده
Excess dietary salt intake differentially modulates the activity of cytochrome (CYP) P450 enzymes in kidney cortex. Exactly how increased angiotensin (Ang) II levels and hypertension change the regulatory effect of high salt on CYP450 enzymes remains unclear. The present study investigated the effects of combined administration of Ang II and a high-salt diet on P450 epoxygenase and hydroxylase protein levels in kidney, as well as afferent arteriolar responses to acetylcholine and sodium nitroprusside. High dietary salt administration for 14 days resulted in increased renal cortical CYP2C11 protein levels, and a significant increase of CYP2C11 and CYP2C23 protein levels in renal microvessels. Administration of Ang II in combination with a high-salt diet prevented the upregulation of renal cortical CYP2C11 protein expression observed with high dietary salt alone, and significantly downregulated expression of CYP2C11, CYP2C23, and CYP2J protein in renal microvessels. A high-salt diet alone decreased CYP4A protein in kidney cortex, and renal cortical CYP4A protein level remained at a low level in Ang II-infused rats treated with a high-salt diet. Increases in blood pressure during Ang II infusion were greater in rats fed a high-salt diet. In addition, afferent arteriolar responsiveness to acetylcholine and sodium nitroprusside was significantly attenuated in Ang II-treated rats versus controls. This decrease was significantly enhanced in Ang II-treated rats given a high-salt diet. These results support the hypothesis that an inability to upregulate CYP2C and maintain CYP2J in the rat kidney and impaired afferent arteriolar vasodilation with chronic Ang II infusion contribute to salt-induced elevation of arterial pressure.
منابع مشابه
Impaired renal vascular reactivity in prehypertensive Dahl salt-sensitive rats.
We have previously shown that renal vascular resistance is less in Dahl salt-sensitive rats than salt-resistant rats fed 1% NaCl diets; however, renal vascular resistance increases before nonrenal vascular resistance as salt-sensitive rats develop hypertension when fed 8% NaCl diets. When salt-resistant rats are given 8% NaCl diets, renal vascular resistance decreases. The current study reports...
متن کاملCytochrome P450 1B1 contributes to renal dysfunction and damage caused by angiotensin II in mice.
Cytochrome P450 1B1 contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the kidney, as well as in salt and water homeostasis, and blood pressure regulation, we determined the contribution of cytochrome P450 1B1 to renal dysfunction and injury associated with angiotensin II-induced ...
متن کاملEpoxyeicosatrienoic acid-mediated renal vasodilation to arachidonic acid is enhanced in SHR.
We tested the hypothesis that cyclooxygenase-independent vasodilation produced by arachidonic acid (AA) is mediated by epoxyeicosatrienoic acids (EETs) and is blunted in the spontaneously hypertensive rat (SHR). At normal perfusion pressure (PP; 70 to 90 mm Hg), AA constricted the renal vasculature in both SHR and normotensive Wistar-Kyoto rats, an effect abolished by cyclooxygenase inhibition,...
متن کاملExperimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet.
Excess dietary salt induces a cytochrome P450 arachidonic acid epoxygenase isoform in rat kidneys (Capdevila, J. H., S. Wei, J. Yang, A. Karara, H. R. Jacobson, J. R. Falck, F. P. Guengerich, and R. N. Dubois. 1992. J. Biol. Chem. 267:21720-21726). Treatment of rats on a high salt diet with the epoxygenase inhibitor, clotrimazole, produces significant increases in mean arterial blood pressure (...
متن کاملCytochrome P450-dependent renal arachidonic acid metabolism in desoxycorticosterone acetate-salt hypertensive mice.
Cytochrome P450 (P450)-dependent arachidonic acid metabolites may act as mediators in the regulation of vascular tone and renal function. We studied arachidonic acid hydroxylase activities in renal microsomes from normotensive NMRI mice, desoxycorticosterone acetate (DOCA)-salt hypertensive mice, and DOCA-salt mice treated with either lovastatin or bezafibrate, both of which improve hemodynamic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 41 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2003